新型量子传感器为超导量子计算机发展开辟了新路径

莫斯科国立科技大学(NUST MISIS)、俄罗斯量子中心(RQC)、以及德国卡尔斯鲁厄理工学院(KIT)的一支联合研究团队,已经在量子优势研究方面取得了重大的进展。由发表在《npj 量子信息》期刊上的研究论文可知,其打造的一款量子传感器,为量子比特中两档能级缺陷的测量和操纵铺平了道路。

新型量子传感器为超导量子计算机发展开辟了新路径

(图自:Sergey Gnuskov / NUST MISIS)

SCITechDaily 指出,在量子计算中,信息以量子计算进行编码。在经典的量子力学模拟实验中,量子比特有着相干的两级系统。

当前最主要的量子比特模式,是基于约瑟夫森结(Josephson junction)的超导量子比特,正如我们在 IBM 和谷歌的量子处理器上所见到的那种量子比特。

新型量子传感器为超导量子计算机发展开辟了新路径

与此同时,科学家们仍未放弃寻找不受其环境影响、支持精确测量和控制、更加完美的量子比特。

超导量子比特的关键,在于纳米级的超导体-绝缘体-超导体约瑟夫森结。作为一种隧道结,它由两片超导金属制成,并由非常薄的绝缘层(常见为氧化铝)隔开。

新型量子传感器为超导量子计算机发展开辟了新路径

然而现代技术不允许以 100% 的精度来构建量子比特,结果导致了所谓的隧穿两级缺陷。这限制了超导量子器件的性能,并且会引起计算错误。

确切的说法是,缺陷会导致量子比特的寿命极短或退相干。而氧化铝和超导体表面的隧穿缺陷,就是超导量子比特中波动和能力损耗的重要来源,最终限制了计算机的运行时间。

研究配图 - 1:实验设置与量子比特样本

研究配图 - 1:实验设置与量子比特样本

研究人员指出,发生的材料缺陷越多,对量子比特的性能掣肘就越大,进而引发更多的计算错误。

好消息是,得益于新开发的量子传感器,其能够对量子系统中的各个二级缺陷展开测量和操作。

研究配图 - 2:缺陷光谱

研究配图 - 2:缺陷光谱

研究合著者,NUST MISIS 超导超材料实验室负责人、俄罗斯量子中心研究组负责人 Alexey Ustinov 教授表示:“传感器本身就属于超导量子比特,能够对单个缺陷进行检测和处理”。

尽管此前也有研究材料结构的传统技术,例如小角度 X 射线散射(SAXS),但其缺点是不够灵敏、难以发现微小的单个缺陷,因而基于传统技术的方案无助于构建最佳的量子比特。

研究配图 - 3:样品电介质中的 TLS 相互影响

研究配图 - 3:样品电介质中的 TLS 相互影响

展望未来,研究人员希望这项技术能够为量子材料的隧道缺陷结构、以及低损耗电介质的光谱学研究开辟新的途径。因为超导量子计算机的发展,迫切需要这种低损耗的电介质。

有关这项研究的详情,已经发表在近日出版的《npj Quantum Information》期刊上,原标题为《Quantum sensors for microscopic tunneling systems》。

来源:cnBeta.COM

最新文章